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This paper proposes a finite time convergence sliding mode control (FSMC) strategy based on linear parameter-varying (LPV)
methodology for the stability control of a morphing aircraft subject to parameter uncertainties and external disturbances. Based
on the Kane method, a longitudinal dynamic model of the morphing aircraft is built. Furthermore, the linearized LPV model of
the aircraft in the wing transition process is obtained, whose scheduling parameters are wing sweep angle and wingspan. The
FSMC scheme is developed into LPV systems by applying the previous results for linear time-invariant (LTI) systems. The
sufficient condition in form of linear matrix inequality (LMI) constraints is derived for the existence of a reduced-order sliding
mode, in which the dynamics can be ensured to keep robust stability and L2 gain performance. The tensor-product (TP) model
transformation approach can be directly applied to solve infinite LMIs belonging to the polynomial parameter-dependent LPV
system. Then, by the parameter-dependent Lyapunov function stability analysis, the synthesized FSMC is proved to drive the
LPV system trajectories toward the predefined switching surface with a finite time arrival. Comparative simulation results in the
nonlinear model demonstrate the robustness and effectiveness of this approach.

1. Introduction

Morphing aircrafts, as a broad range of air vehicles and vehi-
cle components that can make shape transition with internal
morphing devices, can adapt to multimission requirements
[1]. As a result, they will be a substitution, covering the roles
of several different aircrafts that can allow optimized flight
over a large flight envelope instead of merely one flight con-
dition. However, this property will certainly bring great diffi-
culties to the traditional modeling and control methods. Due
to the massive change of aerodynamic configuration during
flight, the morphing aircraft cannot be considered under full
geometry variation and it must take the morphing structures
as well as multirigid body variations into consideration.
Therefore, unlike most conventional aircrafts which are only
concentrated on a fixed-structure and treat themselves as a
single rigid body, the consideration of morphing demands a
combination with several research areas such as aerodynamic
modeling [2], multirigid body dynamics [3], and flight con-
trol based on a large range of reference points [4]. Obviously,
it is important to incorporate a wide range performance into

modeling and controller for the dynamical systems that
describe morphing aircrafts. LPV synthesis techniques natu-
rally fit into this characteristic. By selecting appropriate oper-
ating conditions of the original nonlinear model, the complex
dynamics in morphing process can be represented by LPV
dynamic models [5]. LPV systems, being the specific instance
of linear time-varying (LTV) systems, are the representation
that the entries of the state-space matrices continuously
depend on a time-varying parameter vector that belongs to
a bounded compact set [6, 7]. Using LPV techniques, the
dynamics of the original nonlinear systems can be reduced
to the linear equations. Meanwhile, the controller outputs
will be continuously “scheduled” according to the system
operating conditions. Comparing with the classical gain
schedule techniques [8], LPV control can display prominent
advantages as it can theoretically guarantee global stability
and robustness over the whole operating envelope.

While its controller synthesis methods are theoretically
well-founded based on LMI, LPV control is confronted with
an inevitable challenge: direct generation of these methods to
LPV systems will result in infinitely many LMI constraints
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that have to be satisfied [9]. There are three most common
approaches to fixing this problem. An early possible way is
to impose the constraints on a particular grid of the region
of scheduled parameters [10]. But this discrete numerical
method, which is similar to the classical gain schedule tech-
nique, will undoubtedly jeopardize robust stability and per-
formance. Later developments in multiplier-based linear
fractional transformation (LFT) synthesis make it possible
to obtain finite-dimensional LMI constraints. In this case,
the stability and performance are preserved, yet potential
conservatism is introduced in the full-block S-procedure
[11].The third approach to LPV controller synthesis is based
on the properties of convex sets, in which it requires the LPV
system to admit an affine or polytopic representation. Then,
it is unnecessary to consider the full trajectories of schedul-
ing parameter values, only the vertices of the convex hull
need to satisfy the LMIs [12].However, a general LPV system
may not be a desired polytopic or affine representation. Sev-
eral kinds of mapping transformation are introduced to a
model polytopic LPV system [13].The TP model transfor-
mation, as an equivalent transformation methodology in
essence, is introduced in [14]. It can be directly employed
to obtain a convex polytopic form with the known modeling
accuracy, which greatly decreases the computing load of the
controller design. Another key issue of the LPV system is to
construct parameter-dependent Lyapunov functions to
overcome potential conservatism brought by the slowly
varying parameters. Aiming at providing the controller with
less conservatism and better performance, Wu and Dong
[11] incorporate quadratic LFT parameter-dependent Lya-
punov functions and full-block multipliers into controller
synthesis. Another way to construct Lyapunov functions
with time-varying scheduled parameters is employing differ-
ent Lyapunov functions at each of the vertices of the polytope
LPV systems. By introducing slack variables, Peaucelle and
Arzelier [15] separate the system matrices and the Lyapunov
matrix to follow this method. Obviously, such LMI condi-
tions will reduce conservatism at the expense of computa-
tional complexity.

For a nonlinear system of aircrafts, the Jacobian lineari-
zation approach is the most widespread methodology to
obtain LPV models [5]. Generally, the designers built the
global LPV model by interpolation and fitting of the LTI
models which is formulated at different frozen points of
interest throughout the operational envelope. Unfortunately,
such steps inherently introduce uncertainties and model
mismatches [16]. Moreover, the morphing transition will
bring challenges for exact modeling of flight dynamics for
its own sake. Both of these must be considered in the control
design phase, which means that robust LPV control is
attractive. Most of the current researches for LPV systems
mainly focus on H∞ control techniques; these methods
can reduce the impact of disturbance to some extent.
However, unexpected uncertainties and model mismatches
will deteriorate the performance of the controller [17].
Robust methods designed for uncertain LPV models have
appeared in the literature. Considering actuator fault toler-
ant, a robust control strategy specified for LPV systems with
polytopic uncertainty is proposed in [18]. For uncertain

scheduling parameters appearing in LPV systems, the work
in [19] develops a gain-scheduled output-feedback control-
ler. In [20], a more general polytopic model describing
LPV systems with state-dependent uncertain parameters
is considered, and then the output-feedback controllers
are designed by introducing the Lagrange multiplier term
and adding some weight matrix variables. However, none
of them consider general mismatched uncertainties appear-
ing in LPV systems.

Sliding mode control is an attractive from ‘uncertainty’
standpoint, since the sliding surfaces are insensitive to
matched or mismatched uncertainties [21]. To deal with
uncertain systems with general mismatched uncertainties,
a new reduced sliding mode is proposed in terms of LMI
in [22]. Using the same method, the work in [23] ensures
the robust stability and L2 performance in the presence of
an external disturbance. In [24], a robust adaptive sliding
strategy based on model reference is presented for the track-
ing control problem of a special aircraft. However, all the
methods cited above are based on LTI system descriptions
of the plant and are restricted to the single operational con-
dition. There are very limited researches on the use of slid-
ing mode techniques for LPV systems. Most of them are
restricted to sliding mode observers for a specific class of
LPV systems [25, 26]. By way of exception, the work in
[27] proposes a time-varying sliding mode hyperplane for
LPV systems. Also in [7], LPV-based integral sliding modes
and control allocation are presented in a realistic opera-
tional environment. More recently, a standard second-
order sliding mode control approach is directly explored
for the control of LPV systems in [28]; however, the
approach for turning the infinite LMI constraints into a
finite set of LMIs is simply a gridding-based synthesis with-
out any theoretical proof.

Inspired by these works, the robust sliding mode control
problem for uncertain LPV systems of a kind of large-scale
morphing aircrafts is studied in this paper. First of all,
according to multibody modeling and linearization, longitu-
dinal nonlinear dynamic equations of the morphing aircraft
in wing transition are simplified and transformed into an
LPV model with mismatched uncertainties and external dis-
turbance. Then, in the following LPV controller synthesis, we
give a less conservative LMI existence condition of the
reduced sliding dynamics. In order to avoid solving an infi-
nite number of LMI constraints, the obtained LPV system
is transformed into a convex polytopic by the TP model
transformation. Finally, the synthesis of a parameter-
dependent reaching law is investigated for driving the system
trajectories toward the predefined switching surface with a
finite time arrival.

The exact contributions of this paper over previous works
are concluded as follows:

(i) Compared with the works in [4, 17], we extend the
morphing dimension into two degree of freedom:
wingspan and sweep angle. Both detailed modeling
process based on the Kane method, and explicit
expressions of polynomial parameter-dependent
LPV system are given.
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(ii) In this paper, we explore and evaluate the potential
that the sliding mode control may have in the man-
agement of LPV systems with mismatched uncer-
tainties. Unlike the controller in [28], which is just a
simple mixture of the existed second-order sliding
mode with fixed-structure for uncertain LPV sys-
tems, we adopt the reduced-order sliding mode con-
troller to deal with uncertainties in LPV systems.
Meantime, by applying the slack matrix method to
derive a sufficient condition in the form of finite set
of LMIs, we guarantee that the reduced-order
dynamics in the sliding mode are robust and stable
with the bounded L2 gain performance. Then a
parameter-dependent sliding mode control law can
make the LPV system evolve into its sliding mode
in a finite time.

The remainder of the paper is organized as follows: some
preliminaries are given in Section 2. In Section 3, both a new
morphing model and the corresponding LPV system are pre-
sented. In Section 4, the design process and stability analysis
of FSMC law are demonstrated. In Section 5, numerical sim-
ulations are implemented to justify the performance of the
proposed controller. The conclusion is shown in Section 6.

The notation is standard. The superscript “T” denotes
the transpose of a matrix. P > 0 P ≥ 0 means that P is the
real symmetric and positive-definite (semipositive definite);
A < B A ≤ B stands for that the matrix A − B is the negative
definite (semi-negative definite); I and 0 represent the identity
matrix and a zero matrix, respectively; and • refers to the 2-
norm for a vector or amatrix. In symmetric blockmatrices, we
use ∗ to represent a term that is induced by symmetry. diag
represents a diagonal matrix. Both a′ and a denote the first
order derivative. a″ denotes the second-order derivative. ×
denotes the outer product of vectors.

2. Preliminary Results

Lemma 1. (see [23]). The following block matrix inequality
holds

A11 A12

AT
12 A22

≤
A11 A12

AT
12 A22

, 1

if A11 ≤ A11 holds.

Lemma 2 (see [24]). X and Y are real matrices (or vectors) of
appropriate dimensions; for any scalar ε > 0, one has

XTY + YTX ≤ εXTX + ε−1YTY 2

Lemma 3 (see [12]). The following statements are equivalent:

I

N

T

M
I

N
< 0,

M +
NT

−I
GT +G N − I < 0

3

Lemma 4 (see [29]). Assume that a continuous, nonnegative
function V t satisfies the differential inequality V t ≤ −α
Vη t , where α > 0 and 0 < η < 1 are constants. Then, for
any given t0

V1−η t ≤V1−η t0 − α 1 − η t − t0 , t0 ≤ t ≤ tr , 4

and V t = 0 and t ≥ tr with tr given by

tr = t0 +
V1−η t0
α 1 − η

5

3. Model and Problem Formulation

Flight dynamics of a morphing aircraft is a key component in
the design process and must therefore be modeled accurately
as well as practically. In this section, the longitudinal nonlin-
ear dynamic equations of the morphing aircraft are formu-
lated first, and then the linear parameter-dependent model
is developed for controller synthesis.

3.1. Longitudinal Nonlinear Dynamic Modeling for the
Morphing Aircraft. While numerous morphing designs
exist for advanced aircrafts, we consider a new type of
large-scale morphing aircrafts [30] depicted in Figure 1(a),
whose wings can extend, contract, and rotate to a cer-
tain extent.

The Teledyne Ryan BQM-34 “Firebee”, which is
designed as a high-speed target drone, is chosen as the
baseline platform [31]. The aircraft is equipped with an
easily removable wing that could be modified into a
morphing wing. Also, many variants of this aircraft have
been constructed to accommodate mission requirements
such as subsonic or supersonic flight, reconnaissance,
and combat. Next, we suppose that the wing of each side
of the aircraft is equipped with an inner wing and an
outer wing. In wing morphing process, the inner can

b
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Figure 1: (a) The Morphing aircraft with variable sweep angle and
variable span. (b) Depiction of the multibody representation.
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rotate with Ob and the outer will keep level and move lin-
early along with the airfoil (see Figure 1(a)). Owing to this
specific structure, the morphing aircraft can change the
wing sweep angle and wingspan to accommodate mission
requirements. The maximum wing sweep angle (Λmax) is
45° and the maximum extension (Λmax) is 2m. The geom-
etry of the other parts (fuselage, vertical tail, horizontal
tail, etc.) remains unchanged in this paper.

To simplify the modeling process, we make the following
assumption:

Assumption 1. In the morphing process, the left wing and the
right wing will realize the synchronous motion. The symme-
try axis of the fuselage lies in the same plane as the wings on
both sides.

The traditional approach to modeling a conventional
aircraft is to treat the whole plane as a single rigid body
without regard for the complications brought by the aero-
elastic problems. The morphing aircraft with large-scale
varations mentioned above, however, cannot generally be
modeled as a single rigid body due to the varying inertial
properties caused by the changes of geometric parameters
of the wings. To describe the aircraft dynamic behavior
accurately, the whole structural changes of each part must
be taken into account properly, which means that multibody
modeling is an appropriate solution. The Kane method is a
simple and efficient approach to derive the dynamic model
of a multibody system [32]. Thereby, the longitudinal
dynamics of the morphing motion is described by using Kane
method in this paper.

The aircraft under consideration consists of five separate
rigid bodies (see Figure 1(b)): fuselage (body 1), inner part
of left wing (body 2), outer part of left wing (body 3), inner
part of right wing (body 4), and outer part of right wing
(body 5), and their masses are mb,m1,m2,m1,m2, respec-
tively. The important parameters of the morphing aircraft
are given in Table 1.

Firstly, as shown in Figure 2, we set the origin of the
whole aircraft body coordinate frame Obxbybzb to locate at
the center the wing (the unit vectors corresponding to the
axes xb, yb and zb are ebx , eby and ebz ), and the ground

coordinate system is described as Ogxgygzg. The coordinate
frames of morphing aircraft’s fuselage and the other several
moving parts of the wing are described as Oixiyizi i = 1,…
, 5 , taking the center of mass of each body as the origin cor-
respondingly. In what follows, Kane’s equations will be estab-
lished in the reference frame Obxbybzb.

Assumption 2. Both the aerodynamic force and the thrust are
merely acting on the fuselage (body 1). And the other parts
suffer the effects of gravity only.

There are four steps to establish the Kane equations, as
depicted in Figure 3. Here, we only consider the longitudinal
responses in morphing process. Thus, u, w, q are selected as
independent generalized speed variables.

In Figure 3, F u
Ob
, F w

Ob
and F q

Ob
are generalized active

forces corresponding to u, w, q . FiOb
and Mi

Ob
are general-

ized active forces and active moments of the ith body pro-

jected into Obxbybzb. F
u
Ob
, F w

Ob
, and F

q
Ob

are generalized

inertial forces relative to u, w, q . FiOb
and Mi

Ob
stand for

the generalized inertial force and inertial moment of the ith

body. Ui ~
Ob

and Wi ~
Ob

are partial velocities of the ith body
located into Obxbybzb. The specific definitions of these vari-
ables are given in Appendix A.

According to the fourth step in Figure 3, the detailed
expressions of the Kane equations of longitudinal dynamics
of the morphing aircraft can be written as follows:

f 1 u, w, q, α, θ,Λ,Λ′,Λ″, Δ′, Δ″ = 0,

f 2 w, q, q, u, α, θ,Λ,Λ′, Δ′ = 0,

f 3 w, q, q, u, α, θ,Λ,Λ′, Δ′ = 0

6

The explicit expressions of (6) are given in Appendix B.
By introducing (7), (6) can be transformed into a

wind coordinate frame. Considering the kinematic
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ygzg

y4

yb
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x5
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z1
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Figure 2: Coordinate axis system.

Table 1

b 0.3m

Λ 0~45 deg
Δ 0~2m
Jy 3107.53 kg⋅m2

l1 2.5m

l2 2.0m

mb 771.79 kg

m1 54 kg

m2 13.605 kg

TδT 129.27N/%

4 International Journal of Aerospace Engineering



www.manaraa.com

equation (8), we finally get the full longitudinal dynamic
equation (9).

u = Vcos α,
u = Vcos α − Vsin αα,
w =Vsin α,
w =Vsin α +Vcos αα,

7

θ = q,
h = Vsin θ − α , 8

E

V

α

q

θ

h

=

F1

F2

F3

q

Vsin θ − α

+

W1

W2

W3

0
0

9

The explicit expressions of E, F1, F2, F3,W1,W2, andW3
are given in Appendix C.

Remark 1. By adopting the Kane modeling, only the posi-
tion, velocity and acceleration of Λ and Δ appear in the
dynamic modeling equation (9). They can be computed
and manipulated more practically than the position, veloc-
ity, and acceleration of the center of mass or instantaneous
inertia tensor and its derivative [17]. This shows another
major superiority of the Kane method. Notice that we will
apply our designed LPV-based controller on the original
nonlinear equation (9), and the exact values of Λ′,Λ″

and Δ′, Δ″ at every moment must be obtained so that
we can substitute them into (9). Therefore, the motion
trajectories of sweep angle and span need to be scheduled
appropriately in advance. We will discuss it in the
following section.

Remark 2. W1,W2, and W3 including the first and the
second-order derivative of Λ and Δ are the force and
moment variations affected by the morphing movement,
which can be considered as the additional disturbances in
the wing morphing dynamic response [17]. However, in
the following section, these extra forces and moments are
proved to have such slight influence to the entire dynamic
equations that they can be ignored in the following linear-
ization procedure.

3.2. Longitudinal LPV Model for the Morphing Aircraft. In
this paper, the Jacobian linearization approach is adopted
to transform the nonlinear model of the morphing aircraft
into an LPVmodel. The flight condition of interest is selected
as the altitude h0 = 9144m and the Mach number Ma = 0 5.
By defining the scheduling variables λ =Λ/45° and ξ = Δ/l1,
we get λ ∈ 0, 1 and ξ ∈ 0, 0 8 .

Assumption 3 (see [17]). In this paper, unsteady aerody-
namic effects are neglected. We only focus on the
aerodynamic forces and moments introduced by the
quasi-steady assumption; that is, the aerodynamic forces
and moments of the morphing process in different wing
configurations are nearly identical to those of the corre-
sponding static configuration.

(1) Selecting generalized
speed variables

(2) Formulating generalized
active forces

(3) For mulating generalized
inertial forces

(4) For mulating the
kane equations
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Figure 3: Kane modeling procedure.
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The lift, drag, pitching moments, and thrust in (9) are
given as

D = 1
2 ρV

2SwCDα
α ,

L = 1
2 ρV

2SwCL =
1
2 ρV

2Sw CLα=0
+ CLα

α + CLδe
δe ,

M = 1
2 ρV

2SwcCM

= 1
2 ρV

2Swc CMα=0
+ CMα

α + CMδe
δe +

c
2V Cmq

q ,

T = Tδt
δt

10

Choosing λ = 0, 0 2, 0 4,… , 1 0 and ξ = 0, 0 2, 0 4,… ,
0 8 as the reference points, then the corresponding aerody-
namic parameters for these configurations can be approxi-
mately calculated through computational fluid dynamics
(CFD). Firstly, the outline dimensions of the aircraft are
obtained by observation. Then the three-dimensional model
of the morphing aircraft under different configurations is
established by Catia. After gridding model and importing it
into the fluent software of ANSYS, the aircraft aerodynamic
force and moment can be calculated.

Finally, we integrate, analyze, and calculate the obtained
data of those static configurations and the expressions of
aerodynamic derivatives of the morphing aircraft during
the whole morphing process can be derived by least square
fitting of MATLAB. Therefore, we get the continuous aero-
dynamic parameter expressions in Appendix C.

Next, we take the following morphing process (shown in
Figure 4) as an example. Configuration I stands for loiter
mode with λ = 0 and ξ = 0 8. With this configuration, the
aircraft is provided with a larger lift-to-drag ratio that can
reduce energy consumption during loiter. Configuration II
represents dash mode with λ = 1 and ξ = 0, and the aircraft
can obtain more speed with smaller drag force.

In Figure 5, where the values of aerodynamic coeffi-
cients are varying along with an angle of attack from con-
figuration I to configuration II, we can conclude that the
aerodynamic coefficients of the morphing aircraft change
greatly during the morphing process. For example, the lift
coefficient decreases by about 53% with α = 5∘ when the

aircraft changes from configuration I to configuration II.
The drag coefficient has little changes in the range of the
small angle of attack. Furthermore, the lift-to-drag ratio var-
ies greatly under different aerodynamic configurations,
which provides the possibility for the morphing aircraft to
complete different tasks. The pitching moment coefficient
has a dramatic change during the morphing process, which
is caused by the difference of the distance between the aero-
dynamic center and the mass center.

After linearizing the morphing model equation (9)
at each equilibrium reference point, the longitudinal-
directional dynamics can be expressed as

x =A λ, ξ x + B2 λ, ξ u, 11

where x = ΔV , Δα, Δq, Δθ, Δh T and u = Δδe, Δδt T .
It is easy to verify that the elements in the state-space

matrices depend on the scheduling variables, and hence
we get

A λ, ξ =

A11 λ, ξ A12 λ, ξ 0 −g 0
0 A22 λ, ξ 1 0 0
0 A32 λ, ξ 0 0 0
0 0 1 0 0
0 −V0 0 V0 0

,

B2 λ, ξ =

B11 λ, ξ 0 1425
B21 λ, ξ 0
B31 λ, ξ 0

0 0
0 0

12

The explicit expressions of the elements in the above
matrixes are given in the Appendix D.

Notice that the LPV model equation (11) is constructed on
a family of LTI plants linearized with respect to a set of
equilibrium points of a nonlinear system that represents the
flight envelope of interest. Therefore, the open-loop dynamic
response of morphing process produced by these two models
should be similar, which guarantees that LPV model can be a
reliable alternative to describe the original nonlinear system (9).

However, considering the existence of Λ′,Λ″, Δ′, and
Δ″ in a nonlinear system (6), the motion trajectories of
the sweep angle and span need to be scheduled. According
to the work in [2], we know that the variation rate of the
morphing movement will not change the trend of dynamic
responses, but it will have a marked impact on the pace of
change of the dynamic responses. Taking the long-period
mode V and the short-period mode q as examples,
Figure 6 shows that the dynamic responses vary along
with span and sweep angle in different morphing velocities.
Also, we must notice that too much fast variation rate of
morphing movement will definitely bring a nonignorable
unsteady aerodynamic effect.

I

II

Figure 4: Morphing process.
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In what follows, the morphing time is assumed to start at
0 s and end at 10 s. Notice that the morphing bodies are
driven by servo actuators, then a real-time energy-optimal
trajectory generation for a servomotor system is adopted to

arrange morphing mechanism motions. The servomotor sys-
tem of the morphing mechanism is subject to acceleration
and speed constraints. The trajectory generation is formu-
lated as a linear-constrained optimal control problem and
the Pontryagin’s maximum principle can be applied to
derive necessary optimality conditions. Instead of solving
multipoint boundary value problems directly, we can solve
this constrained optimal control by transforming it into
an optimal time interval of the speed-constrained arc
and a specific acceleration-constrained optimal control
problem, which can be rapidly solved using the numerical
method and analytic method. Here, the energy-optimal
morphing trajectory is presented without concrete deriva-
tion and the details are given in [33]. The proposed tra-
jectory not only can guarantee the smooth morphing
movement but also will save the additional energy caused
by morphing mechanisms.

Here we define

Λmax′ = 7 deg/s ,
Λmax″ = 2 deg/s2 ,
Λmin″ = −2 deg/s2 ,
Δmax′ = 0 31 m/s ,
Δmax″ = 0 09 m/s2 ,
Δmin″ = −0 09 m/s2

13
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Figure 5: Aerodynamic coefficients.

7International Journal of Aerospace Engineering



www.manaraa.com

Then, the energy-optimal morphing trajectories from
configuration I to configuration II are designed and shown
in Figure 7.

The distinct responses of the two kinds of models are
shown in Figure 8. We can see that the altitude gradually
decreases and at the same time the speed increases accord-
ingly. This is mainly due to the reduction of the wing area
brought by the contraction and sweep motion of the wing.
The value of lift coefficient is becoming smaller along with a
reduction of the wing area. Therefore, the lift force belonging
to the vertical direction is not large enough to balance the
gravity, which provides the aircraft with the downward
acceleration. Meantime, with the decrease of pitch angle,
the component of the engine thrust has changed from the
upward direction into the downward direction. And this
will certainly result in the downward acceleration. During
the overall morphing process, the angle of attack increases
as the value of the vertical velocity component becomes
larger. At the end of the morphing process, the aircraft is
going to seek a new balance state where the speed and
the angle of attack are larger to counteract the smaller
value of lift force brought by the reduction of the wing
area. Furthermore, the discrepancies of dynamic responses
between the LPV model and the nonlinear model are small.
The LPV model is able to capture the dynamic behavior
and match the nonlinear model to some extent. Therefore,
the validated LPV model can become an object for the
controller synthesis.

Figure 9 also shows the proportion of the additional
disturbances W1, W2, and W3 in the whole dynamic model.
It is easy to see that W1, W2, and W3 are not in the same
order magnitude comparing with F1, F2, and F3. Therefore,
we can simplify the linearization procedure by omitting
these extra forces and moments. However, this will

certainly propose a higher requirement for the robustness
of the controller.

Moreover, the aerodynamics in wing morphing obtained
by CFD is regarded as being quasi steady. Unfortunately,
the unsteady aerodynamic characteristic caused by dynamic
hysteresis effect does exist in the practical morphing pro-
cess [34]. This will bring modeling uncertainties of the
aerodynamics in the nonlinear model to a certain extent.
Meanwhile, external disturbances such as gust wind or tur-
bulent interference exert considerable influence during
flight. Therefore, now we consider the more challenging
case in which the LPV system is affected by parametric per-
turbation in the system matrices and external disturbance,
that is,

x = A λ, ξ + ΔA λ, ξ x + B1w + B2 λ, ξ + ΔB2 λ, ξ u
14
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In view of this, robust control techniques for uncer-
tain LPV system are indispensable to maintain nominal
performance and robustness in the face of massive uncer-
tain factors.

4. Sliding Mode LPV Control

In order to guarantee the stability of the morphing air-
craft, especially the stability during the morphing process,
an appropriate controller has to be designed to achieve the
following objectives:

(i) Not only at any static morphing completion state but
also during the dynamic morphing process, the
closed loop of the flight system should stable globally.

(ii) Keep the altitude and speed constant during the tran-
sition from configuration I to configuration II.

To accomplish a smooth transition process against a
great deal of uncertainty, we design the FSMC for the uncer-
tain LPV system (14).

4.1. Sliding Mode Dynamics Analysis. Consider the sys-
tem with the following state-space representation for the
LPV system

x t = A Θ + ΔA Θ x t + B1 Θ w t + B2u t ,
z t =C1 Θ x t +D1 Θ w t ,

15

where x ∈ Rnx is the state, w ∈ Rnw is the external disturbance,
u ∈ Rnu is the control input, and z ∈ Rnz is the performance of
the system. We denote continuous, measurable quantities
that range in some admissible set Θ as scheduling variables,
Θ t = θ1 t , θ2 t ,… , θnθ t T . ΔA Θ represents the sys-
tem matrix uncertainty.

The following assumptions are made.

Assumption 4. The pair A Θ , B2 is stabilizable for all Θ,
and the state x is available.

Assumption 5. The input matrix B2 has full column rank and
B⊥ is any basis of the null space of BT

2 .

Assumption 6. There exists a known constant εΔ such that for
all Θ, ΔA Θ ≤ εΔ. As for w t , we set εw = w t max is
the upper bound of w t which is assumed to be obtained
in advance.

Remark 3. The matrix B2 is assumed to be constant. When
this is not the case, low-pass filters with sufficiently large
bandwidth can be used to filter the system’s inputs and hence
to move all the time-varying parameters into the state matrix
[12]. Therefore, even in the case when B2 is the functions of
Θ, the augmented model of the system can be converted into
the form (15). In consideration of the system (14), we define a
new control input u by

xu =Auxu + Buu,
u =Cuxu,

16

where Au is stable. Then the augmented LPV plant is
described by

x

xu
=

A λ, ξ + ΔA λ, ξ B2 λ, ξ + ΔB2 λ, ξ Cu

0 Au
x

xu
+

B1

0
w +

0

Bu

u

17

For now, note that the control matrix B2 is now parameter-
free. The bandwidth of filter of (16) must be chosen larger
than the desired system bandwidth. With this constraint,
the proposed prefiltering will not significantly alter the
original system (14). Therefore, the specific assumption of
B2 in the system (15) is withheld.

Remark 4. As described in Assumption 5, the uncertainty
ΔA Θ is not necessary to satisfy the matched conditions.
To stabilize the LPV system, the FSMC technique is
utilized here. First, a sliding mode surface function is
designed as

s t = BT
2 P

−1x t , 18
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where P ∈ Rnx ⋅nx is a positive-definite matrix which needs to
be designed later.

Define a transformation matrix (M) and the associated
vector (v) as

M =
M1

M2

=
BT
⊥PB⊥

−1BT
⊥

BT
2P

−1B2
−1BT

2 P
−1

,

v =
v1

v2
=Mx,

19

where v1 ∈ Rnx−nu and v2 ∈ Rnu .
The “regular form” of the original system (15) is then

represented as follows

v1 t

v2 t
=

M1 A Θ + ΔA Θ PB⊥ M1 A Θ + ΔA Θ B2

M2 A Θ + ΔA Θ PB⊥ M2 A Θ + ΔA Θ B2

v1 t

v2 t
+

M1B1 Θ

M2B1 Θ
w t +

0

M2B2

u t

20

Corresponding to the regular form, the reduced-order
sliding mode dynamics on the sliding surface s t = 0 with
dimension of nx − nu can be obtained as [22, 23]

v1 t =M1 A Θ + ΔA Θ PB⊥

Ac

v1 t +M1B1 Θ
Bc

w t ,

z t =C1 Θ PB⊥

Cc

v1 t +D1 Θ w t
21

In the following, a robust stability criterion will be pro-
posed to guarantee the existence of the sliding surface (18)
under the existing of ΔA Θ and w t .

Theorem 1. Given a scalar γ > 0, the switching surface s t
exists and the sliding mode dynamics in (21) is admissible with
bounded L2 gain performance γ, that is, the system in the slid-
ing mode is robust stable and has an L2 gain less than γ for all
admissible uncertainties ΔA Θ and for all exogenous input
w t ∈ L2 0,∞ , if there exist matrices P > 0, G11,G21,… ,
G51,G61, G12,G22,… ,G52,G62, and a scalar σ > 0 such that
for all Θ

where

Ω11 Θ =G11A Θ TB⊥ + BT
⊥A Θ GT

11 + ε2ΔG12B⊥ + ε2ΔB
T
⊥G

T
12,

Ω12 Θ = BT
⊥A Θ GT

21 + ε2ΔB
T
⊥G

T
22 +G11C1 Θ T ,

Ω13 Θ = BT
⊥B1 Θ + BT

⊥A Θ GT
31 + ε2ΔB

T
⊥G

T
32,

Ω15 Θ = BT
⊥P + ε2ΔB

T
⊥G

T
52 + BT

⊥A Θ GT
51 −G11,

Ω14 Θ = BT
⊥A Θ GT

41 + ε2ΔB
T
⊥G

T
42 +G11,

Ω16 Θ = 1
2 σB

T
⊥ + BT

⊥A Θ GT
61 + ε2ΔB

T
⊥G

T
62 −G12

23

Proof. By using the bounded real lemma [12], the system (21)
satisfies the robust L2 performance requirement if and only if
there exists a positive-define matrix Xc, such that

AT
c Xc + XcAc XcBc CT

c

∗ −γI D1 Θ T

∗ ∗ −γI

< 0 24

By selecting Xc = BT
⊥PB⊥, substituting (21) into

inequality (24), and applying Lemmas 1 and 2, inequality
(24) holds if

Ω11 Θ Ω12 Θ Ω13 Θ Ω14 Θ Ω15 Θ Ω16 Θ
∗ −γI +G21CT

1 Θ + C1 Θ GT
21 D1 Θ +C1 Θ GT

31 G21 +C1 Θ GT
41 −G21 + C1 Θ GT

51 −G22 + C1 Θ GT
61

∗ ∗ −γI G31 −G31 −G32

∗ ∗ ∗ −σI +G41 +GT
41 −G41 +GT

51 −G42 +GT
61

∗ ∗ ∗ ∗ −G51 −GT
51 −G52 −GT

61

∗ ∗ ∗ ∗ ∗ −G62 −GT
62

< 0, 22

BT
⊥ A Θ P + PA Θ T B⊥ + σε2ΔB

T
⊥B⊥ + 1

σ
BT
⊥PPB⊥ BT

⊥B1 Θ BT
⊥PC1 Θ T

∗ −γI D1 Θ T

∗ ∗ −γI

< 0 25
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According to Schur complement formula and elementary
transformation, inequality (25) is equivalent to

Inequality (26) can be further expressed as

I

N

T

0 0 BT
⊥B1 Θ 0 BT

⊥P
1
2 σB

T
⊥

∗ −γI D1 Θ 0 0 0
∗ ∗ −γI 0 0 0
∗ ∗ ∗ −σI 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

I

N
< 0,

27

where

N =
A Θ TB⊥ C1 Θ T 0 I

ε2ΔB⊥ 0 0 0
28

By using Lemma 3, we have

0 0 BT
⊥B1 Θ 0 BT

⊥P
1
2 σB

T
⊥

∗ −γI D1 Θ 0 0 0
∗ ∗ −γI 0 0 0
∗ ∗ ∗ −σI 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

+
N

−I
GT +G N −I < 0

29

where

G =
GT

11 GT
21 GT

31 GT
41 GT

51 GT
61

GT
12 GT

22 GT
32 GT

42 GT
52 GT

62

T

30

After matrix decomposition and combination, we can
obtain the final inequality (22). This completes the proof.

Remark 5. In inequality (22), G is considered as a full-
block matrix to get the feasible solution of LMIs. We
may also simplify G by setting Gij = 0 or Gij = I partly to
reduce computational complexity. But this will bring con-
servatism definitely.

We notice that the inequality (22) has the infinite num-
ber of LMI constraints. Therefore, the main additional chal-
lenge in the LPV system sliding surface existence is hence
the reduction of these to finite-dimensional LMIs that can
be solved via semidefinite programming (SDP). Here, a pos-
sible approach is to transform the nominal LPV system (15)
into a convex polytopic one by TP model transformation.
Then based on the properties of a convex set, it can be con-
cluded that these infinite constraints will hold for all
parameter trajectories if and only if it holds for the finite
vertex systems.

In TP model transformation, the step of making high-
order singular value decomposition (HOSVD) to a tensor
is regarded as the crucial point [35]. When constructing
a polytopic LPV model by HOSVD, its computational
complexity is directly proportional to the number of the
reserved singular values. In the work of [36], we can find
the details of HOSVD about computational complexity
relaxation and the trade-off between approximation accuracy
and complexity.

Now, we consider the following system matrix

S Θ =
A Θ B1 Θ
C1 Θ D1 Θ

31

Using TP model transformation and discarding the
smaller singular values as well as their corresponding singu-
lar vectors, one obtains a higher order form as

S Θ ≈ 〠
I1

i1=1
〠
I2

i1=1
⋯〠

IN

iN

∏
nθ

n=1
wn,in θn Si1,i2,…,iN , 32

with∑In
in=1wn,in θn = 1, ∀n, θn, andwn,in θn ≥ 0, ∀n, θn, in. In

(32), I1, I2,… , IN stand for the number of the reserved sin-
gular values along each dimension.

The tensor S Θ is then approximately constructed from
finite LTI vertex systems Si1,i2,…,iN and the weight function

BT
⊥ A Θ P + PA Θ T B⊥ + σε2ΔB

T
⊥B⊥ BT

⊥PC1 Θ T BT
⊥B1 Θ BT

⊥P

∗ −γI D1 Θ 0
∗ ∗ −γI 0
∗ ∗ ∗ −σI

< 0 26
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wn,in θn which is obtained through reserved singular vec-
tors. Here, to guarantee that the resulting LTI vertex systems
form a convex hull of the LPV system, we use the canonical
form to transform the weight functions.

Consequently, we only need to consider finite number
of LMI constraints corresponding to the obtained vertex
system Si1,i2,…,iN for the controller design, which means
that inequality (22) in Theorem 1 can be rewritten as

where

Ω11i =G11AT
i B⊥ + BT

⊥AiGT
11 + ε2ΔG12B⊥ + ε2ΔB

T
⊥G

T
12,

Ω12i = BT
⊥AiG21

T + ε2ΔB
T
⊥G

T
22 +G11CT

1i,
Ω13i = BT

⊥B1i + BT
⊥AiG31

T + ε2ΔB
T
⊥G

T
32,

Ω14i = BT
⊥AiG41

T + ε2ΔB
T
⊥G

T
42 +G11,

Ω15i = BT
⊥Pi + ε2ΔB

T
⊥G

T
52 + BT

⊥AiG51
T −G11,

Ω16i =
1
2σB

T
⊥ + BT

⊥AiG61
T + ε2ΔB

T
⊥G

T
62 −G12

34

Remark 6. We apply Lemma 3 to eliminate the coupling
between the Lyapunov function matrix and the system
matrix. Then for the purpose of reducing conservatism, dif-
ferent Lyapunov functions at each of the vertices of the poly-
tope system should be employed. The details and
verifications can be found in [35, 37]. Furthermore, if the
solution Pi1,i2,…,iN exists at each of the vertices, then the
parameter-dependent Lyapunov function can be obtained as

P Θ = 〠
I1

i1=1
〠
I2

i1=1
⋯〠

IN

iN

∏
N

n=1
wn,in θn Pi1,i2,…,iN 35

4.2. SMC Law Synthesis. In this section, we shall synthesize an
FSMC law, by which the trajectories of the LPV system in
(15) can be driven onto the prespecified switching surface s
t = 0 in finite time and then are maintained there for all
subsequent time.

Theorem 2. Suppose that the switching surface function (18)
exists, namely, the LMIs in (33) is feasible for Pi1,i2,…,iN . Then
the trajectories of system (15) can be driven onto the switching
surface s t = 0 by the following sliding mode control law:

u t = −M2 Θ A Θ + P′ Θ P Θ −1 B2M2 Θ − I x t

− η Θ sign M2 Θ x t ,
36

where M2 Θ is described in (19) with P−1 turning into
P Θ −1. P′ Θ has the form as P′ Θ =∑I1

i1=1∑
I2
i2=1⋯∑IN

iN=1
∏N

n=1wn,in θn ′Pi1,i2,…,iN and η Θ is designed as

η Θ = μ + εΔ M2 Θ x + εw M2 Θ B1 Θ , 37

where μ is a positive scalar.

Proof. As the surface is defined as s t = 0, we choose the
following parameter-dependent Lyapunov function

V t = 1
2 s t

T BT
2P Θ −1B2

−1 T
BT
2P Θ −1B2

−1
s t

= 1
2 x

TM2 Θ TM2 Θ x

38

Taking the derivative of V t , considering the SMC law
in (36) and noting M2 Θ B2 = I and M2′ Θ =M2 Θ P′ Θ
P Θ −1 B2M2 Θ − I , we have

V t = xTM2 Θ T M2 Θ ΔA Θ x +M2 Θ B1 Θ w
− η Θ sign M2 Θ x

39

In addition, we notice that xTM2 Θ T sign M2 Θ x ≥
M2 Θ x and η Θ > 0. Thus,

V t ≤ xTM2 Θ T

εΔ M2 Θ x + εw M2 Θ B1 Θ − η Θ
40

Ω11i Ω12i Ω13i Ω14i Ω15i Ω16i

∗ −γI +G21CT
1i +C1iGT

21 D1i +C1iG
T
31 G21 +C1iGT

41 −G21 + C1iG
T
51 −G22 + C1iGT

61

∗ ∗ −γI G31 −G31 −G32

∗ ∗ ∗ −σI +G41 +GT
41 −G41 +GT

51 −G42 +GT
61

∗ ∗ ∗ ∗ −G51 −GT
51 −G52 −GT

61

∗ ∗ ∗ ∗ ∗ −G62 −GT
62

< 0, 33
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Substituting (37), inequality (40) can be further
reduced to

V t ≤ −μ xTM2 Θ T = −μV1/2 t 41

By using Lemma 4, it can be seen from (41) that there
exists a time t∗ ∈ 0,V1/2 0 /μ such that V t = 0 and conse-
quently s t = 0 when t ≥ t∗. This means that the system tra-
jectories can be driven onto the predefined switching surface
in a finite time, thereby completing the proof.

Remark 7. To deal with the problems introduced by chatter-
ing phenomenon, we replace the switching term sign • with
•/ • + β, where β is an adjustable scalar. Then, one can tune
the gain μ and β to get a better robust performance and
reduce the chattering simultaneously.

5. Simulation

Having formulated the approach to modeling of morph-
ing dynamic equations and FSMC-LPV controller synthe-
sis, we are in a position to verify the effectiveness and
performance of the presented algorithm when applied in
the longitudinal nonlinear model. To this end, this sec-
tion is intended to illustrate that the controller can make
the altitude and speed remain constant during morphing

process when subjected to parameter uncertainty and
external disturbance.

To obtain a standard realization of the LPV plant from
system (14) to system (15), we consider an L2 gain perfor-
mance minimization problem with a performance output
z t = IVIh

T , where IV = eV dt and Ih = eh dt represent
the error integrals of speed and altitude, respectively. Mean-
time, for turning B2 into a constant matrix, two additional
state variables are introduced to filter inputs u = Δδe, Δδt T .
Here, we select the matrices of prefilter (16) as

Au =
−0 5 1

0 −0 5
,

Bu = 1 1 T ,
Cu = I2

42

The rest of coefficient matrixes in (15) are set as B1 Θ =
I3×3 0 T , C1 Θ = 0 I2×2

T , and D1 Θ = 0.
In what follows, we calculate the parameter-dependent

Lyapunov function P Θ in Theorem 1. Considering the
computational load and approximation accuracy, four
singular values of λ dimension and three singular values of
ξ dimension as well as their corresponding singular vectors
are remained to obtain the minimal vertex systems. There-
fore, it is concluded that the polynomial parameter-
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Figure 10: Weight functions of the convex model.
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dependent LPV system (11) can be approximately presented
in the convex polytopic form with minimum 4× 3= 12 LTI
systems, that is,

S λ, ξ = A λ, ξ B2 λ, ξ

≈ 〠
4

i

〠
3

j

w1,i λ w2,j ξ Ai,j B2i, j ,
43

where the normalized weighting functions are given in
Figure 10.

By using the YALMIP interface with the SDP solver
SeduMi toolbox in MATLAB, we can calculate the minimal
performance γmin = 4 6567 in Theorem 1. However, optimal-
ity is not desirable in this case since it is achieved at the
expense of large entry values in the concerned matrixes. To
prevent this phenomenon, we use a slightly higher value of
γ. In this simulation, the desired performance is chosen as
γsubopt = 5 0. Then, the Lyapunov matrixes Pi,j can be calcu-
lated at each LTI vertex systems S λ, ξ i,j.

For the aircraft during both morphing state and fixed
state, the concerned model uncertain parameters and

FSMC-LPV GS-H∞-LPV156

152

148

156
151.8
151.7
151.6
151.5
151.4

91442

9144

91438

152

V
 (m

/s
)

h 
(m

)
𝛼

 (°
)

q 
(°

/s
)

V
 (m

/s
)

h 
(m

)
𝛼

 (°
)

q 
(°

/s
)

148

9150

9146

9142

9138

9150

9146

9142

9138

16

12

8

4

0

6

2

−2

−6
0

0 5 10 15

0 5 10 15

0 5 10 150 5 10 15

0 5 10 15

0 5 10 15

0 5 10 15

5

Perturbation
Nominal

Time (sec) Time (sec)
10 15

−4

16

12

8

4

0

6

2

−2

−6

−4

Figure 11: Closed-loop response during morphing process.

14 International Journal of Aerospace Engineering



www.manaraa.com

external disturbance are given in (44). Based on these uncer-
tainties, the controller parameters are designed in (45).

ΔCL = ΔCD = ΔCM = ±30%,
Δmt = ΔJy = ±5%,

Δ 1
2 ρV0

2 = ±20%,

dFV
= 0 01sin 2πt ,

dFα
= 0 02sin 2πt ,

dMq
= 0 05sin 2πt ,

44

μ = 5 6,
εw = 0 2445,
εΔ = 0 2,
β = 0 1

45

Here, we consider the following case: morphing move-
ment starts from configuration I to configuration II (see
Figure 4) taking 10 seconds to complete. The energy-
optimal motion trajectories of the sweep angle and span are
just designed as Figure 7. The resulting FSMC with L2 gain
performance is applied at the morphing aircraft’s wing tran-
sition phase. Comparative simulations are also developed to
verify the robustness of the proposed controllers. Gain self-
scheduled H∞ controllers (GS-H∞) can be designed for the
same vertex LTI systems (43) based on the method which is
derived from [12, 17], and, correspondingly, the suboptimal
performance is chosen as γsubopt = 6 0.

In what follows, we perform 50 separate simulation
experiments with different perturbation parameters for the

two controllers. At each group of two comparative experi-
ments; however, the values of perturbation parameters are
identical. The response of the aircraft in a closed-loop simu-
lation is shown in Figure 11. In addition, Figure 12 gives the
changes in elevator deflection and throttle.

It is clear that under parameter perturbation and external
disturbances, the FSMC-LPV controller can guarantee the
variation of speed being less than 0.1m/s and the altitude
increases or decreases 0.2m to the maximum during the wing
morphing process. They can both converge to the previous
value in a short time. Due to the uncertainties, the elevator
deflection and the rate of pitch may change drastically at
the beginning, but they are both within acceptable ranges.
Since the wing area is reducing, the angle of attack will
increase smoothly to achieve a new balance. It is obvious
that the FSMC-LPV controller based on the morphing air-
craft’s linear model can eliminate the adverse effect of uncer-
tainties caused by wing morphing and guarantee constant
speed and altitude flight during the wing transition process.
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Figure 12: Closed-loop controller outputs.

Table 2: Partial velocity of each body.

i = 1 i = 2 i = 3 i = 4 i = 5
Ui u

Ob
ebx ebx ebx ebx ebx

Ui w
Ob

ebz ebz ebz ebz ebz

Ui q
Ob

−bebz lΔsin Λebz l1/2 sin Λebz lΔsin Λebz
Wi u

Ob
0 0 0 0 0

Wi w
Ob

0 0 0 0 0

Wi q
Ob

eby eby eby eby eby
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On the other hand, provided that there exist no parame-
ters perturbation, conventional GS-H∞ LPV controller can
perform as well as the FSMC-LPV controller. However, H∞
controller, although being a robust strategy especially for
external disturbance, cannot restrain parameter perturbation
effectively. This will cause the speed and altitude to fail and
to remain in previous levels. Although the closed-loop sys-
tem is stable, the changes in elevator deflection and throttle
significantly increase during the morphing process, which
may generate failures in the actuators. Overall, Figures 11
and 12 elaborate the control performances between the two
controllers and we can conclude that the FSMC-LPV con-
troller is more robust under parameter perturbation.

6. Conclusion

In this paper, a systematic method of LPV-based sliding
mode controller synthesis is explored for a morphing aircraft
with a variable sweep angle and a variable span. At first, the
longitudinal dynamic model of the morphing aircraft is
derived by using Kane method. Then the LPV model with
mismatched uncertainties of the morphing aircraft is devel-
oped and it can describe the morphing phase’s complex
behavior. Therefore, the following controller synthesis can
be based on the obtained LPV model. Secondly, we extend
the sliding mode control of existing works for LTI systems
via an LPV methodology. Sufficient condition in the form
of LMIs has been established so as to ensure that the dynam-
ics in the sliding mode are robustly admissible with a
bounded L2 gain performance. In order to avoid solving an
infinite number of LMI constraints during the controller syn-
thesis, we give a less conservative LMI existence condition by
applying slack variables decoupling method and convex
polytopic transformation. Furthermore, according to the
parameter-dependent Lyapunov function stability analysis,
it is verified that the system trajectories can be driven onto
the predefined switching surface in a finite time by the syn-
thesized FSMC. Finally, the sliding mode approach has been
verified to maintain nominal performance and robustness in
the face of parameter perturbation and external disturbance
by the numerical simulations. The proposed sliding mode
control synthesis for uncertain LPV system can be extended
to cover a wide range of general LPV systems.

Nomenclature

Λ: Sweep angle (deg)
Δ: Expansion of wingspan (m)
u, w: Scalar components of speed in body axes

(m/s)
q: Pitch angular velocity (rad/s)
Jx, Jy, Jz: Moments of inertia of the fuselage (kg/s2)
J2, J3, J4, J5: Moments of inertia of the body i (kg/s2)
l1, l2: Fixed length of inner wing and outer wing

(m)
lΔ: The distance from Ob to O3 or O5 (m)
α: Angle of attack (rad)
θ: Pitch angle (rad)
mt: The whole mass of the aircraft (kg)

D, L, T: Drag, lift, and thrust (N)
g: Acceleration due to gravity (m/s2)
CDα

, CL, CM : The coefficients of drag, lift, and moment
δe: Elevator angular deflection (rad)
δT: Throttle (%)
TδT

: Throttle coefficient
CLα=0

, CLα
, CLδe

: Lift force coefficient with respect to α = 0
, α, δe

CMα=0
, CMα

, CMδe
: Pitching moment coefficient with respect
to α = 0, α, δe

M: Pitching moment (N∙m)
V: Velocity (m/s)
h: Altitude (m)
ρ: Air density (kg/m3)
Sw: Wing area (m2)
b: The distance from Ob to O1 (m)
λ, ξ: Scheduling parameters.

Appendix

A. The Specific Definitions of Variables in Step 2
and Step 3 of Figure 3

The generalized active force FiOb
of body i can be given by

F1Ob
= T −mbg sin θ + L sin α −D cos α ebx

+ mbg cos θ −D sin α − L cos α ebz ,
F2Ob

= −m1g sin θebx +m1g cos θebz ,

F3Ob
= −m2g sin θebx +m2g cos θebz ,

F4Ob
= −m1g sin θebx +m1g cos θebz ,

F5Ob
= −m2g sin θebx +m2g cos θebz

A 1

The generalized active moment Mi
Ob

can be given by

M1
Ob

=Meby ,
M2

Ob
=M3

Ob
=M4

Ob
=M5

Ob
= 0

A 2

The partial velocities Ui ~
Ob

and Wi ~
Ob

of each body i are
defined in Table 2.

The generalized inertial force FiOb
and the generalized

inertial moment Mi
Ob

of body i can be obtained as

FiOb
= −miaiOb

= −mi δviOb

δt
+ ωi

Ob
× viOb

,

Mi
Ob

= −JiOb

δωi
Ob

δt
−ωi

Ob
× JiOb

ωi
Ob

,

A 3

where mi is the mass of body. aiOb
is the acceleration of the

center of mass. viOb
is the velocity. JiOb

is the inertia matrix.

ωi
Ob

is the rotation angular velocity.

To calculate FiOb
and Mi

Ob
, the following equations are

given by
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v1Ob
= uebx + w − bq ebz ,

v2Ob
= u −

l1
2 Λ

′ cos Λ ebx +
l1
2 Λ

′ sin Λeby

+ w + l1
2 q sin Λ ebz ,

v3Ob
= u − Δ′ sin Λ − lΔΛ′ cos Λ ebx

+ lΔΛ′ sin Λ − Δ′ cos Λ eby + w + qlΔ sin Λ ebz ,

v4Ob
= u −

l1
2 Λ

′ cos Λ ebx −
l1
2 Λ

′ sin Λeby

+ w + l1
2 q sin Λ ebz ,

v5Ob
= u − Δ′ sin Λ − lΔΛ′ cos Λ ebx

+ Δ′ cos Λ − lΔΛ′ sin Λ eby + w + qlΔsin Λ ebz ,

ω1
Ob

= qeby ,
ω2
Ob

=ω3
Ob

= qeby −Λebz ,
ω4
Ob

=ω5
Ob

= qeby +Λebz ,

J1Ob
= diag Jx Jy Jz ,

JiOb
=

Ji cos2 Λ −Ji sin Λ cos Λ 0

−Ji sin Λ cos Λ Ji sin2Λ 0

0 0 Ji

, i = 2, 3,

JiOb
=

Ji cos2 Λ Ji sin Λ cos Λ 0

Ji sin Λ cos Λ Ji sin2 Λ 0

0 0 Ji

, i = 4, 5,

A 4

where lΔ = l1 + Δ − l2/2. By simplifying body 2, body 3, body
4, and body 5 into the rods with an even distribution of the
weight, we get J2 = J4 =m1l

2
1/12 and J3 = J5 =m2l

2
2/12.

B. Detailed Expressions of Kane Equations f 1,
f 2, and f 3

f 1 = T + L sin α −D cos α −mtg sin θ −mt u + qw

+mbbq
2 −m1l1 2Λ′2 sin Λ −Λ″ cos Λ + q2 sin Λ

− 2m2 −3Δ′Λ′ cos θ1 − Δ″ sin Λ + 2lΔΛ′
2 sin Λ

− lΔΛ″ cos Λ + q2lΔ sin Λ ,
f 2 =mtg cos θ −D sin α − L cos α −mtw

+mtqu +mbbq −m1l1 2qΛ cos Λ + q sin Λ

−m2 2lΔq sin Λ + 4qΔ′ sin Λ + 4qlΔΛ′ cos Λ ,

f 3 = −b mbg cos θ −D sin α − L cos α + l1m1g cos θ sin Λ
+ 2lΔm2g cos θ sin Λ +My +mbb w − bq − qu

− l1m1 sin Λ w + ql1Λ′ cos Λ + l1
2 q sin Λ − qu

− 2m2lΔsin Λ w + 2qΔ′ sin Λ + 2qlΔΛ′ cos Λ

+ qlΔ sin Λ − qu − Jyq − 2 J2 + J3

qΛ′ sin Λ cos Λ + q sin2Λ

B 1

C. Explicit Expressions of Full Longitudinal
Dynamic Equation (9)

where e = l1m1sin Λ + 2m2lΔsin Λ −mbb .

F1 = Tcos α −D −mtgsin θ − α − q2 cos α m1l1 sin Λ + 2m2lΔ sin Λ −mbb ,
F2 = −sin αT − L +mtgcos θ − α +mtqV + q2 sin α m1l1 sin Λ + 2m2lΔ sin Λ −mbb ,
F3 = bsin αD + bcos αL +My + gcos θ l1m1 sin Λ + 2lΔm2 sin Λ −mbb + qVcos α l1m1 sin Λ + 2m2lΔ sin Λ −mbb ,

E =

mt 0 sin αe 0 0

0 mtV cos αe 0 0

sin αe Vcos αe mbb
2 + sin2Λ 1

2 l
2
1m1 + 2m2l

2
Δ + 2 J2 + J3 + Jy 0 0

0 0 0 1 0

0 0 0 0 1

,

C 1
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W1 = −m1l1cos α Λ′2 sin Λ −Λ″ cos Λ − 2m2 cos α

−3Δ′Λ′ cos Λ − Δ″ sin Λ + 2lΔΛ′
2 sin Λ −Λ″lΔ cos Λ

− 2qm1l1Λ″ sin α cos Λ −m2 sin α

4qΔ′ sin Λ + 4qlΔΛ′ cos Λ ,

W2 =m1l1 sin α Λ′2 sin Λ −Λ″ cos Λ + 2m2 sin α

−3Δ′Λ′ cos Λ − Δ″ sin Λ + 2lΔΛ′
2 sin Λ −Λ″lΔ cos Λ

− 2qm1l1Λ′ cos α cos Λ −m2 cos α
4qΔ′ sin Λ + 4qlΔΛ′ cos Λ ,

W3 = −qm1l
2
1Λ′ sin Λ cos Λ − 2m2lΔ sin Λ

2qΔ′ sin Λ + 2qlΔΛ′ cos Λ

− 2qΛ′ J2 + J3 sin Λ cos Λ
C 2

D. Aerodynamic Parameter Expressions

CD α = 0 0257 − 0 0069ξ − 0 0036λ
+ 0 0014 − 0 0002ξ − 0 0008λ α,

CLα=0
= 0 1417 + 0 0642ξ + 0 0209λ − 0 0291ξ2 − 0 0336λξ

− 0 1527λ2 + 0 0159λξ2 − 0 0025λ2ξ + 0 0565λ3,

CLα
= 0 0979 + 0 0051ξ − 0 0148λ + 0 0342λξ

− 0 0632λ2 − 0 1548λ2ξ − 0 1925λ3

+ 0 1164λ3ξ + 0 0992λ4,

CLδe
= 0 0038 − 0 0027ξ + 0 0012ξ2,

CMα=0
= 0 0357 − 0 0912ξ − 0 1026λ + 0 0702ξ2

− 0 2233λξ + 0 0674λ2 − 0 0264ξ3

− 0 0192λξ2 + 0 1672λ2ξ,

CMα
= −0 0293 − 0 0024ξ − 0 0245λ + 0 0083ξ2

− 0 0649λξ − 0 0758λ2 − 0 0932λξ2

− 0 1684λ2ξ + 0 2344λ3 − 0 3587λ2ξ2

+ 0 1852λ3ξ − 0 1849λ4 − 0 3052λ3ξ2

+ 0 0346λ4ξ + 0 0401λ5,

CMδe
= −0 0142 + 0 0083ξ + 0 0032λ

− 0 0028ξ2 − 0 001λξ,

CMq
= −0 0323 − 0 001ξ − 0 0315λ + 0 0062ξ2

− 0 0521λξ − 0 0498λ2 − 0 0832λξ2

− 0 2184λ2ξ + 0 1566λ3 − 0 4287λ2ξ2

D 1

E. The Explicit Expressions of the Elements in
(12)

A11 λ, ξ = −0 0229 − 0 0099ξ + 0 0032λ + 0 0042ξ2

+ 0 0017λξ − 0 0012λ2,
A12 λ, ξ = 4 5878 + 2 1267ξ + 4 5612λ − 1 7067ξ2

− 2 7651λξ − 14 1742λ2 − 0 9305ξ3

+ 1 8083λξ2 + 7 6959λ2ξ + 28 2882λ3

+ 0 1857ξ4 − 0 7726λξ3 + 5 8537λ2ξ2

− 14 9300λ3ξ − 30 1300λ4 + 0 1337ξ5

− 0 9328λξ4 + 1 9177λ2ξ3 − 7 3449λ3ξ2

+ 10 4090λ4ξ + 10 3441λ5,

A22 λ, ξ = −2 5833 − 2 1035ξ + 0 3914λ − 0 0876ξ2

− 0 7024λξ − 1 6632λ2 + 0 0064ξ3

− 0 9041λξ2 + 2 7902λ2ξ + 5 1029λ3

− 0 0012ξ4 + 0 0074λξ3 + 3 6357λ2ξ2

+ 0 8459λ3ξ − 2 6484λ4 + 0 0021λξ4

− 0 0058λ2ξ3 − 2 6835λ3ξ2 − 1 9139λ4ξ,

A32 λ, ξ = −24 3367 − 19 0056ξ − 4 8625λ + 13 6127ξ2

− 35 9235λξ − 91 0887λ2 − 0 2609ξ3

− 244 8501λξ2 − 229 3611λ2ξ + 285 7218λ3

− 0 3695ξ4 + 45 0681λξ3 + 539 5873λ2ξ2

+ 214 2836λ3ξ − 272 8778λ4 − 0 0185ξ5

+ 1 2585λξ4 − 54 8806λ2ξ3 − 353 7608λ3ξ2

+ 46 0297λ4ξ + 80 4166λ5,

B11 λ, ξ = 0 0191 + 0 0851ξ − 0 0283λ − 0 0369ξ2

− 0 1039λξ − 0 0258λ2 + 0 0177λξ2

+ 0 0539λ2ξ + 0 0099λ3,

B21 λ, ξ = −0 1189 − 0 0057ξ + 0 0201λ + 0 0255ξ2

+ 0 0077λξ − 0 0053λ2 − 0 0248ξ3

− 0 0009λξ2 − 0 0033λ2ξ,

B31 λ, ξ = −14 3634 − 0 8088ξ + 4 3360λ + 2 2148ξ2

+ 1 4978λξ + 0 6234λ2 − 1 5459ξ3 − 0 7150λξ2

+ 0 7183λ2ξ − 0 4237λ3 − 0 0803ξ4 + 0 2528λξ3

+ 0 0444λ2ξ2 − 0 5051λ3ξ
E 1
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